Last update 18 April 2022
Vaccines are responsible for many global public health successes, such as the eradication of smallpox and significant reductions in other serious infections like polio and measles. Even so, vaccinations have also long been the subject of various ethical controversies. The key ethical debates related to vaccine regulation, development, and use generally revolve around (1) mandates, (2) research and testing, (3) informed consent, and (4) access disparities.
U.S. Vaccine Mandates and Objections
In the United States, state policies mandate certain immunizations, including school entry requirements, which cover significant numbers of children. The first school vaccination requirements were enacted in the 1850s to prevent smallpox. Federal and state efforts to eradicate measles in the 1960s and 1970s motivated many modern mandates policies. By the 1990s, all 50 states required students to receive certain immunizations, and most states required coverage for older schoolchildren and those in daycare centers and Head Start programs., Vaccines are licensed and added to the immunization schedule after research, testing, and monitoring, which is coordinated and reviewed by The National Vaccine Program and other key vaccine committees, like the Advisory Committee on Immunization Practices (ACIP). States then devise mandates according to this body of knowledge.
Ethical debates and objections to school and other mandates arise because some individuals and communities disagree with the mandates, and/or have religious or philosophical beliefs that conflict with vaccination. For example, in an effort to protect the greatest number of people, public health vaccine regulations may infringe upon individual autonomy and liberty. Tension results when individuals want to exercise their right to protect themselves and/or their children by refusing vaccination, if they do not accept existing medical or safety evidence, or if their ideological beliefs do not support vaccination.
Sometimes vaccine mandate controversies include multiple and interrelated ethical dilemmas. This is the case for the vaccine for the human papillomavirus (HPV), a sexually transmitted disease (STD). The FDA approved the first HPV vaccine in 2006. After the ACIP recommended three doses of the vaccine for girls aged 11-12, various state legislatures attempted to mandate vaccination. Ethical objections to this mandate range from religious concerns that a vaccine to protect against an STD contradicts abstinence-based messages; fears that the vaccine could potentially force a child to undergo an intervention misaligned with her family’s beliefs; and human rights questions about the fairness of providing a vaccine to one sex only (though now in the United States the vaccine is recommended for all adolescents).,
All 50 states allow vaccination exemptions for medical contraindications; to address individuals’ beliefs and their varied concerns about vaccination, 48 states allow religious exemptions; and 20 states allow exemptions for philosophical reasons. Many scientific and medical research studies have found that individuals who exercise religious and/or philosophical exemptions are at greater risk of contracting infections, which put themselves and their communities at risk. Thus, medical and public health advocates often struggle to balance the ethics of protecting individual beliefs and the community’s health.
Vaccine Research and Testing
Ethical discussions also surround the research and testing of vaccines, including discussions about vaccine development, and study design, population, and trial location.
To be licensed, vaccines undergo many years of research, and must pass rigorous safety and efficacy standards. The vaccine development and research process includes diverse experts of many scientific and social disciplines, including public health, epidemiology, immunology, and statistics, and from pharmaceutical companies. These stakeholders may have conflicting priorities and motives, which contributes to various ethical discussions.
Sometimes researchers disagree about who to include in vaccine trials. To properly test a vaccine’s effectiveness, a clinical trial including a control group that does not get the test vaccine is usually necessary. However, failing to provide any adequate preventive option can be a difficult decision when the vaccine can potentially prevent a serious, untreatable, or fatal infection. For instance, TB vaccine researchers struggled to devise ethical control group procedures. Existing TB vaccines, called Bacillus Calmette-Guérin (BCG) vaccines, are not always effective to prevent TB, and can cause infections in people with compromised immune systems, such as people living with HIV/AIDS. When they test the effectiveness of new strategies, researchers debate whether it is safe and ethical to give control participants these vaccines.
Additionally, it is important to understand a vaccine’s safety and efficacy in various populations, but testing a vaccine in vulnerable populations, such as children, also raises ethical concerns. Researchers must balance the need to protect children’s safety with the need to adequately understand how a vaccine will perform, and protect children when administered.
Similarly, it is important to understand how vaccines affect people in developing countries. Yet, conducting vaccine research in developing countries includes ethical concerns, such as how to provide necessary screening or treatment if diseases are detected; how to meaningfully involve local communities in the research design process; how to ensure that the trial and vaccine can be supervised by local ethical review panels; and how to ensure that participants understand consent. For example, participants in a malaria vaccine trial in Mali reported difficulty understanding several concepts, including withdrawal from the study, side effects from the vaccine, and the difference between a research study and therapy, suggesting that better communication strategies are required to ensure proper consent across cultures.
Ethical discussions are a key component of HIV vaccine research and development, because HIV vaccines pose numerous unique ethical challenges. For example, AIDS stigma may put vaccine trial participants at psychological risk if they encounter discrimination. In addition, researchers must figure out how to provide appropriate and adequate medical care and protection from stigma for participants who screen HIV positive. And, researchers have to consider that if participants misunderstand the trial, they may think they are protected from the virus and put themselves at risk., , The complexity of these issues places ethics analyses at the forefront of HIV vaccine research.
Informed Consent
Ethical debates also surround vaccine implementation and delivery, such as those concerning informed consent. Although federal guidelines do not require written consent before vaccination (as they do for certain other procedures, such as surgeries), the National Childhood Vaccine Injury Act of 1986 requires healthcare providers to give vaccine recipients, or their parents or legal representatives, a Vaccine Information Statement (VIS). The VIS provides basic information about vaccine risks and benefits, and is designed to provide the information a patient or parent needs to make an informed decision.
Some states have specific informed consent laws. Certain lawmakers and other patient rights advocates believe that requiring specific consent is ethical and appropriate, so that parents are better informed about vaccines, and have adequate time to ask questions if needed. Opponents fear that a regulated written consent procedure may add unnecessary fear or concern to the vaccination process.
Access Issues
Many vaccine-related ethical debates center on the evidence that access to vaccination depends in some way on socioeconomic and racial ethnic minority status. Implicit in these discussions is whether all lives are equal, and equally deserving of opportunities to be protected by vaccination.
Several vaccine shortages have made headlines over the last 10 years. Between November 2000 and May 2003, the United States saw shortages of 8 of the 11 vaccines for childhood diseases. And in 2004, the flu vaccine shortage grabbed national media attention. Shortages result from too few vaccine producers and suppliers., Various factors limit vaccine research and development, including liability, expense, time, and decreased demand. For example, demand for flu vaccines varies annually, and producers must dispose of extra vaccines each year. [18 From an ethical perspective, increasing the number of vaccine producers would positively influence health. When vaccines are in short supply, medical providers must decide who should be protected, and who must be left vulnerable to disease.
In the United States, low-income children and children without health insurance can face challenges in receiving vaccinations. The Section 317 program, a federal program to vaccinate underserved children, attempts to help support coverage, but cannot serve all children in need. Access disparities also affect adults. Even after controlling for economic status, researchers have found that racial ethnic minority adults are less likely than whites to receive preventive care, including vaccination.
Global health disparities are even more extreme and highlight additional ethical dilemmas. Developing countries face threats from disabling and deadly infections, called “poverty diseases,” such as hookworm and leprosy, which are unknown to most Americans. Although vaccines can help prevent these diseases, vaccine development lags behind community health needs. To further complicate matters, the places affected by poverty diseases often lack the infrastructure to support wide-scale vaccination, and face many competing health and social priorities, such as poverty, violence, and poor roads., Public health and medical officials must make difficult decisions about which health needs to address, and how to incorporate vaccination into often-scarce services.
Examples of disparities in the United States and globally signal the need for continued efforts to ensure equal opportunities for people to benefit from vaccination.
Sources
- Centers for Disease Control and Prevention. Public Health Law Program. . Accessed 01/10/2018.
- Duffy, J. School vaccination: The precursor to school medical inspection. J Hist Med Allied Sci. 1978;33:344-55.
- Sencer, D.J., Dull, H.B., Langmuir, A.D. Epidemiological basis for eradication of measles in 1967. Public Health Rep. 1967;82:253-6.
- Malone, K.M., Hinman, A.R. . (104 KB). Atlanta, GA: Centers for Disease Control and Prevention. Accessed 01/10/2018.
- Centers for Disease Control and Prevention. State immunization requirements 1998-1999. Atlanta, GA: U. S. Department of Health and Human Services, 1999.
- Salmon, D.A., Omer, S.B. Individual freedoms versus collective responsibility: Immunization decision making in the face of occasionally repeating values. Emerging Themes in Epidemiology. 2006;3:1-3.
- Javitt, G., Berkowitz, D., Gostin, L.O. Accessing mandatory HPV vaccination: Who should call the shots? Journal of Law, Medicine, and Ethics. 2008:384-395.
- Colgrove, J. The ethics and politics of compulsory HPV vaccination. N Engl J Med. 2006;355:2390-2391.
- Feikin, D.R., Lezotte, D.C., Hamman, R.F., Salmon, D.A., Chen, R.T., Hoffman, R.E. Individual and community risks of measles and pertussis associated with personal exemptions to immunization. JAMA. 2000;284:3145-3150.
- Caplan, A.L., Schwartz, J.L. Ethics. In: Plotkin SA, Walter OA, Offit PA, eds. Vaccines. 5th ed. Philadelphia: Saunders, 2008.
- Snider, D.E. Ethical issues in tuberculosis vaccine trials. Clin Infectious Diseases. 2000;30 (Suppl 3):S271-5.
- U.S. Department of Health and Human Services. . Accessed 01/10/2018.
- Krosin, M.T., Klitzman, R., Levin, B., Cheng, J. Ranney, M. L. Problems in comprehension of informed consent in rural and peri-urban Mali, West Africa. Clin Trials. 2006;3:306-313.
- UNAIDS. . (895 KB). Geneva: UNAIDS; 2004 (reprint);04-07E:1-52. Accessed 04/06/2022.
- Beloqui, J., Chokevivat, K., Collins, C. HIV vaccine research and human rights: Examples from three countries planning efficacy trials. Health and Human Rights. 1998;3:38-58.
- Centers for Disease Control and Prevention. . Accessed 01/10/2018.
- Florida House of Representatives. . Accessed 01/10/2018.
- Grady, D. . New York Times. October 17, 2004. Accessed 01/10/2018.
- Centers for Disease Control and Prevention. . Accessed 01/10/2018.
- Lees, K.A., Wortley, P.M., Coughlin, S.S. Comparison of racial/ethnic disparities in adult immunization and cancer screening. Am J Prev Med. 2005;29:404-11.